Multi derivation Maurer–Cartan algebras and sh Lie–Rinehart algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized sigma-derivation on Banach algebras

Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...

متن کامل

Characterization of $(delta‎, ‎varepsilon)$-double derivation on rings ‎and ‎algebras

This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...

متن کامل

Epimorphisms onto Derivation Algebras

We prove that the separating space of an epimorphism from a Lie–Banach algebra onto the (continuous) derivation algebra Der(A) of a Banach algebra A consists of derivations which map into the radical of A.

متن کامل

On Derivation Algebras of Malcev Algebras and Lie Triple Systems

W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...

متن کامل

Derived brackets and sh Leibniz algebras

We will give a generalized framework of derived bracket construction. It will be shown that a deformation differential provides a strong homotopy (sh) Leibniz algebra structure by derived bracket construction. A relationship between the three concepts, homotopy algebra theory, deformation theory and derived bracket construction, will be discussed. We will prove that the derived bracket construc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2016.10.008